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Free energies from integral equation theories: Enforcing path independence

Stefan M. Kast
Physikalische Chemie, Technische Universita¨t Darmstadt, Petersenstraße 20, 64287 Darmstadt, Germany

~Received 23 September 2002; published 17 April 2003!

A variational formalism is constructed for deriving the chemical potential and the Helmholtz free energy in
various statistical-mechanical integral equation theories of fluids. Nonzero bridge functions extending the
scope of the theories beyond the hypernetted chain approximation can be classified as to whether or not they
imply path dependence of the free energy. Classes of bridge functions free of the path dependence problem are
derived, based on which a route is devised toward direct computation of free energies from the simulation of
a single state.
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Integral equation theories of fluids, particularly of the li
uid state of matter, have received increased interest in re
years through their application not only to simple liquids b
also to, e.g., complex species in solution, interfacial pheno
ena, etc. A commonly used integral equation for the deter
nation of liquid structure is the one-dimensional~1D! ‘‘ref-
erence interaction site model’’~RISM! or site-site Ornstein-
Zernike ~OZ! equation of molecular fluids@1#

h5v+c+v1v+c+~rh!. ~1!

It relates the total correlation functionh5„hag(r )… ~the ra-
dial distribution function isg5h11) to the direct correla-
tion functionc5„cag(r )…, v5„vag(r )… are the intramolecu-
lar correlations,r is the density,a,g represent molecula
sites, and+ denotes convolution. For a solvated molecu
~solute sitesa, solvent sitesg! in infinite dilution one has in
the 1D case

rhag5 (
a8,g8

vaa8+ca8g8+xg8g ~2!

and for the 3D RISM equations, where a multisite solute
treated as a single anisotropic body@2,3#,

rhg5(
g8

cg8+xg8g ~3!

with the solvent susceptibilityx5rv1r2h. The atomic OZ
equation follows from Eq.~1! as h5c1c+(rh) in the ex-
tended atom limit; the molecular OZ relation has basically
analogous form but is defined over a different domain
cluding molecular orientations@4#. These equations must b
supplied with a closure relation~b is the inverse temperatur
andu the pair potential!

hag5exp~2buag1hag2cag1Bag!21, ~4!

which introduces the bridge functionB. Despite the well-
known conceptual difficulties of the RISM equations with
the hypernetted chain~HNC! approximation for whichB
50, we can use such an expression at least formally a
corrective device toward exact correlation functions. Alm
all nonzero bridge functions known in the literature are ty
cally functions of the indirect correlation function~ICF! t
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5h2c, i.e., B5B(t), or of a ‘‘renormalized’’ ICFB(t* 5t
2bu2) whereu2 is a ‘‘suitably chosen’’ long-range part o
the total potential~see, e.g.,@5–7#!.

One of the most important properties of integral equat
theories within the HNC approximation is the fact that t
excess chemical potentialm and the excess Helmholtz fre
energyA are given in closed form@8,9# since the correspond
ing coupling parameter integral, given here prototypically
a molecule interacting via site-site pair potentials with
single component, homogeneous environment,

m5r(
a,g

E drE
0

1

dl@hag~r ,l!11#
]uag~r ,l!

]l
, ~5!

can be written as an exact differential that simultaneou
implies independence of the path prescribed by the coup
parameterl. A is given for a one-component system by t
right-hand side of Eq.~5! multiplied by N/2, N being the
number of particles. For nonzero bridge functions this is g
erally not the case, a fact that has been noticed only mar
ally in the literature. Apparently Kjellander and Sarman@10#
were the first who discovered the path dependence for c
mon bridge functions applied to simple liquids; later Lee@11#
argued on topological grounds that the linear scaling pa
i.e.,B„t(l)…5B(lt1), is the ‘‘correct’’ one due to the forma
equivalence of the exact expression and the linear sca
result for simple bridge functions. In the case of a renorm
ized ICF, Lee and co-workers@6,7# assumed the renormaliz
ing long-range potential to be constant uponl integration.
Although motivated topologically, an inconsistency is intr
duced in this way since atl50 the bridge function would
not vanish as it should in the absence of any interactio
Choudhury and Ghosh@12# let both the ICF and the renor
malizing potential scale linearly, without further motivatio
The path dependence is conserved in any case.

For a reliable and unambiguous theory, enforcing p
independenceis, of course, of foremost importance. To th
end a general formalism is needed that is capable of discr
nating between path-independent and path-dependent
gral equation theories of various kinds. The present articl
aimed at filling this gap. We start by rephrasing the sufficie
condition for path independence, namely, the existence o
©2003 The American Physical Society03-1
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exact differential, in terms of a variational stationarity pri
ciple. The path-independent excess chemical potential~and
analogously the free energy!

m5E
0

1

dl
]m

]l
5E

0

1

dlE dr L~r ,l!5E
0

1

dlE dr
]F~r ,l!

]l
~6!

is given as a functional of a functionF of the coupling pa-
rameter and some spatial coordinates. If the integral eq
tions ~1!–~3! or the atomic and molecular OZ equations d
fine the integrand,F can be found in closed form within th
HNC approximation@8,9#. In other cases we can at lea
demand for the existence of Eq.~6! that the variation van-
ishes,

dm50, ~7!

as can be seen from the corresponding Euler-Lagrange e
tion @13#

dm

dF~r ,l!
5

]L

]F~r ,l!
2

]

]l

]L

]Fl~r ,l!
50

with Fl indicating the partial derivative with respect tol.
For the general integrand in Eq.~5!, where an explicitF is
not immediately recognizable, we have to treat the defi
tions governing the interrelation ofh and u in the form of
constraints that are added to a general Lagrangian. In
manner, Eq.~7! can be satisfied by equating the function
derivatives taken independently with respect toh,c,t,u with
zero. The constrained chemical potential functional rea
prototypically for the 1D case,

m5E
0

1

dlE dr(
a,g

H r@hag~r ,l!11#
]uag~r ,l!

]l

1pag~r ,l!Pag1vag~r ,l!VagJ
1

q

~2p!3 E
0

1

dlE dk Q~k,l!,

where from Eq.~4! and the definition oft

Pag5exp~2buag1tag1Bag!2hag21,

Vag5hag2cag2tag ,

and the integral equations are covered by an ‘‘isoperimet
@13# or integral constraint: from Eq.~2! ~see also@9#!

Q1D5 (
a,a8,g,g8

ĉag

] ĉa8g8
]l

v̂aa8x̂gg82(
a,g

] ĉag

]l
rĥag ,

where the carets denote Fourier transforms. With a sim
functional for the 3D case and from Eq.~3! we obtain

Q3D5 (
g,g8

ĉg

] ĉg8
]l

x̂gg82(
g

] ĉg

]l
rĥg .
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For the Helmholtz free energy we would write

QOZ5r ĉ
] ĉ

]l S 11
r ĉ

12r ĉD2
] ĉ

]l
rĥ

~cf. @8#!, given here only for the OZ equation that is need
later; the first term of the Lagrangian is to be multiplied
1/2.

As a proof of concept showing that the isoperimetric co
straint is indeed sufficient we can now rederive the kno
1D RISM/HNC result form @9#. The Euler-Lagrange equa
tions in this case are~for functional derivatives of ak space
integral with respect tor space functions see@9,14#!

dm

dhag
5r

]uag

]l
2pag2qr

]cag

]l
1vag50, ~8!

dm

dcag
5qr

]hag

]l
2vag50,

dm

dtag
5pag~hag11!2vag50,

dm

duag
52bpag~hag11!2r

]hag

]l
50.

Solving for the unknown Lagrange parameters yields

pag52b21r
]hag

]l
~hag11!21,

vag52b21r
]hag

]l
,

q52b21.

As it should,q is independent ofl and r ; the same is ob-
tained for the free energy. Upon insertion into Eq.~8! and
noting from Eq.~2! that c andh scale in the same way with
l, we obtain the well-known result

mHNC5b21r(
a,g

E dr S 1

2
hag

2 2cag2
1

2
hagcagD . ~9!

In summary, sufficient conditions for the existence of an e
act differential are therefore that~a! the constrained varia
tions of m or A vanish nontrivially, yielding~b! a Lagrange
parameterq that is independent of spatial coordinates and
coupling parameter.

Turning now to nonzero bridge functions various cas
can be examined with the present formalism. For the co
monly used formBag5Bag(tag) we get

q52b21~11]Bag /]tag!,

so that the derivative should be constant for path indep
dence, which cannot be satisfied except for the essent
unusable case ofB being a linear function oft. All these
closuresBag(tag) do not lead to an exact differential an
3-2
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therefore imply path dependence. This result was found
different manner by Kjellander and Sarman@10# in the path
dependence analysis for simple fluids.

If the bridge function is an independent function of t
coupling parameter, another Euler-Lagrange equation is
essary:

dm

dBag
5pag~hag11!50,

whereby the variation becomes underdetermined and
chemical potential would trivially vanish. An exact differen
tial therefore does not exist, entailing path dependence. S
bridge functions have been used by Duet al. @15# and by
Kovalenko and Hirata@16# in studies of the hydration o
apolar species. In Ref.@16# ~and similarly in Ref.@15#! the
repulsive bridge correction

Bag5 ln )
hÞg

@vhg+ exp~2buah
rep!#

has been used for noble gases in water where the supers
‘‘rep’’ indicates the repulsiver 212 term of the Lennard-Jone
potential. Although this part is clearly related to the to
potential, the way the splitting is done means additional
formation not provided by the theory itself. Consequently
the separate potential terms~and with them the part enterin
the bridge function! are scaled byl6uattr and l12urep, as in
@16#, the hydration free energies of Ne, Ar, Kr, and Xe a
2.97, 1.90, 1.50, and 0.99 kcal mol21, respectively. If instead
l12uattr and l12urep are chosen, we obtain 3.33, 3.01, 3.0
and 2.99 kcal mol21. In these cases, fitting parametrized e
pirical bridge functions in order to minimize the differenc
between integral equation prediction and experiment a
Ref. @15# is, of course, a viable route, but one has to keep
mind that the coupling path chosen acts as another empi
parameter.

The idea of the repulsive bridge correction has, of cou
a sound physical basis as outlined in@15,16#, which can be
exploited by splitting the total chemical potential into a r
pulsive part under the action of the scaled bridge funct
and an attractive component where the bridge correctio
kept constant. The latter part is simply given by subtract
the HNC-type functionals~9! supplied with the correlation
functions derived from the full and only the repulsive pote
tial. For the former,B5B@u# is a functional of the now
‘‘full’’ repulsive potential. It appears hopeless to prove th
existence of an exact differential for this complicated ca
but there is some numerical evidence. Skipping details of
derivation, if path independence were satisfied we would
pect

m5~11K !mHNC@hrep,crep#

with the constantK being possibly only a function of tem
perature and density and the HNC-type functional of the
pulsive potential correlation functionshrep and crep. Indeed,
for purely repulsive noble gases in water we obtain a fa
constantK with values in the range between20.551 and
04120
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20.544 as derived from numerical coupling parameter in
gration that is apparently path independent.

A surprising result is obtained if the bridge expression
allowed to be an explicit function of the correlation functio
and potential. ForB(u,h,t) we have~subscripts are omitted
for simplicity!

q52b21~11]B/]t !~12]B/]bu!21

and forB(u,h,c)

q52b21~12]B/]c!~12]B/]bu!21,

both independent ofh. This meansq52b21, implying path
independence forany function B(t2bu), B(c1bu),
B(h,t2bu), B(h,c1bu), andB(h), constituting a princi-
pal result of this article, again valid for both chemical pote
tial and free energy. Since the particular function to be u
can vary widely as long as the relations betweent/c and u
are maintained, it is in general not even possible to fin
closed form expression form and A. In other words, these
functions can lead to ‘‘hidden,’’ nonexplicit exact differen
tials for the chemical potential and free energy. For instan
in the case ofB(t2bu), the other Lagrange parameters f
m are

v52b21r
]h

]l
,

p52b21r
]h

]l
~h11!21~12]B/]bu!21.

]B/]bu is a function of botht andu; furthermore, defining
an arbitrary path for one quantity entails a specific path
the other that may be hard to extract from the closure~4!.
Such an explicit expression would be needed for a clo
form chemical potential obtained by insertingp into Eq. ~8!
and integrating. Despite the technical difficulties with the
classes of bridge functions implying path independence,
renormalization idea@5# is given an important physical bas
for its interpretation.

Developing model bridge functions satisfying path ind
pendence based on the results of the last paragraph is be
the scope of this article. If the total free energy is subdivid
as A(u11u2)5A1(u1)1DA2(u2), the first part being as-
sumed to be known and the second part being path inde
dent, we can, however, immediately use documented fu
tions of t* 5t2bu2 , the ICF renormalized with the long
range attractive potentialu2 . In this way the free energy ca
be computed from a single simulation of the final state on
In addition to earlier attempts toward this end, like Bara
yai’s geometric approach@17# and perturbative schemes@18#,
a similar idea has been pursued by Matubayasi and Naka
@19# using an energy representation of the integral equa
and the linear scaling idea for solving the coupling parame
integral.

In this work, a suitable renormalized bridge function
fitted to ‘‘exact’’ simulation data for the Lennard-Jones flu
provided by Llano-Restrepo and Chapman@20#, yielding
DA2 from path-independent coupling parameter integrati
3-3
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A1 is obtained from the Carnahan-Starling hard-sphere eq
tion of state@21#. The model bridge function used here is
renormalized and parametrized variant of the Verlet funct
@22#

B~ t* !52
z

2
t* 2

1

114t* /5
.

The total Lennard-Jones potential is subdivided into sh
and long-range parts according to Weeks, Chandler,
Andersen@23#. The OZ equation is solved with an ‘‘exact
closure for a variety of reduced densities and temperatu
as given in@20#. The resulting indirect correlation function

TABLE I. Helmholtz free energies from fitting to exact bridg
functions, A/N«, and from the analytic equation of stat
(A/N«)EOS, for various reduced densitiesr* and temperaturesT* ,
optimal bridge parameterz, and hard sphere diameterdHS/s. « and
s correspond to well depth and contact distance of the Lenn
Jones potential.

r* T* z dHS/s A/N« (A/N«)EOS

0.4 1.5 0.4483 0.9984 21.186 21.159
0.6 1.5 0.7811 0.9984 21.441 21.412
0.7 1.5 0.8960 0.9984 21.394 21.380
0.8 1.5 0.9899 0.9984 21.143 21.167
0.9 1.5 1.0578 0.9984 20.589 20.703
0.8 1.0 0.9930 1.0139 22.543 22.561
0.8 0.81 1.0083 1.0214 23.128 23.144
0.85 0.72 1.0742 1.0254 23.454 23.488
04120
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are used in linear fits of the bridge parameterz to the exact
bridge functions. With the resulting model function, the co
pling parameter integration is performed numerically w
the arbitrarily chosen relationu(l)5u11l6u2 by repeatedly
solving the OZ equation forl between 0 and 1, yielding
DA2 . The effective hard-sphere diameterdHS needed in the
Carnahan-Starling equation forA1 is determined from the
simple Barker-Henderson formula@24#

dHS5E
0

`

dr@12exp~2bu1!#.

As a reference for the total free energy, the analytical eq
tion of state for the Lennard-Jones fluid of Johnsonet al.
@25# is chosen. The results are summarized in Table I, in
cating an excellent performance of this simple strategy
emphasizing the quality of path-independent bridge mod

In conclusion, several promising options for future dev
opments can be envisaged. The development of p
independent model bridge functions, on one hand, will
quite a challenging yet most important goal on the way
better self-contained theories of the liquid state. These
tempts will benefit from the various consistency conditio
found in the literature@5,26#. On the other hand, semiempi
ical theories could be developed by parametrizing kno
renormalized bridge functions to represent the structural
free energy results of molecular simulations. The ‘‘direc
approach to the computation of free energies from simu
tions of single states has the potential to reduce the com
tational burden for the determination of liquid and soluti
state free energies by orders of magnitude.
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